Global Existence and Asymptotic Stability for a Class of Coupled Reaction-Diffusion Systems on Growing Domains

  • SCI-E
作者: Redouane Douaifia;Salem Abdelmalek;Samir Bendoukha
作者机构: Larbi Tebessi Univ, Lab Math Informat & Syst LAMIS, Tebessa, Algeria.
Larbi Tebessi Univ, Dept Math & Comp Sci, Tebessa, Algeria.
Taibah Univ, Coll Engn Yanbu, Elect Engn Dept, Yanbu, Saudi Arabia.
语种: 英文
关键词: Reaction-diffusion systems;Global existence;Evolving domain;Global asymptotic stability;Lyapunov function
期刊: Acta Applicandae Mathematicae
ISSN: 0167-8019
年: 2021
卷: 171
期: 1
页码: 1-13
基金类别: Directorate-General for Scientific Research and Technological Development (DGRSDT) of Algeria
摘要: The main purpose of this paper is to extend the result of Barabanova (Proc. Am. Math. Soc. 122:827–831, 1994) on the global existence, uniqueness, uniform boundedness, and the asymptotic behavior of solutions for a weakly coupled class of reaction-diffusion systems on a growing domain with an isotropic growth. Numerical simulations are used to affirm and support the analytical findings.

文件格式:
导出字段:
导出
关闭
Global Existence and Asymptotic Stability for a Class of Coupled Reaction-Diffusion Systems on Growing Domains
有问题请联系我们,邮箱:常见的失败原因